CAN WE TRUST LONG-RANGE WEATHER FORECASTS?
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Abstract. Long-range weather forecasts are widely used in the energy
industry, but too often their properties and limitations are not understood
well enough. This chapter reviews the characteristics, methods and reliability
of long-range weather prediction, and makes recommendations regarding its
use. Despite their limited skill, long-range forecasts can still be a valuable
tool for managing weather risk provided the necessary caution is exercised.
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1. Introduction

What does ‘long range’ actually mean in weather prediction? In the energy
sector, the appellation ‘long range’ commonly refers to time horizons of one
to several years. In weather prediction however, the definition of ‘long
range’ is based on the notion of atmospheric predictability. Figure 1 shows
the skill of eight competing forecasts of daily average surface temperatures
at one location (London Heathrow, United Kingdom) produced by purely
atmospheric (i.e. the evolution of oceans is not predicted) numerical pre-
diction models. In this case, skill is measured in % through comparing the
accuracy (errors) achieved by the forecasts with that obtained using
seasonal normal temperatures obtained from climatology through the period
considered (6 months). Positive (negative) skill means that the forecasts are
more (less) accurate than simple seasonal normal temperatures.

It can be seen that in this case none of the forecasts on Figure 1 has
positive skill beyond day 9. With other weather variables like surface wind
speed or daily accumulated precipitation, forecast skill usually drops faster
than with daily average surface temperature. In all cases though, information
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on the initial state of the atmosphere at the start of the forecast fades away
rapidly as a result of inexorable error growth and contamination. Because of
this ‘memory loss’, exact knowledge of the atmosphere’s initial state becomes
irrelevant after about 2 weeks or less depending on the degree of pre-
dictability of the situation, and as a result predictions of daily weather
fluctuations produced by atmospheric models are not more accurate than
long-term climatology.

However, persistent forcing from the Earth’s surface can have long-term
effects on the average state of the atmosphere, like e.g.:

« The patterns of sea-surface temperature anomalies in the North Atlantic
(North Atlantic Oscillation tripole), in the tropical Pacific (El Nifio/La
Nifa), or in the North Pacific (Pacific Decadal Oscillation)

« The extent of snow cover over Eurasia

Some predictability of average weather conditions can therefore be
gained by including these non-atmospheric factors in the forecast. The long
range refers to time horizons from one to several months (e.g. seasonal)
where average weekly or monthly weather conditions still enjoy some
predictability. The short and medium ranges refer to time horizons of 1-2
days and from 2 days to 2 weeks, respectively. In these ranges, transient
weather systems such as storms, fronts and anticyclones can be predicted by
models, but uncertainty as to their intensity and timing increases rapidly.
Because of this, it is more suitable to communicate forecasts using con-
fidence intervals or probabilities, more particularly so in the medium range
and beyond. The transition time window between 2 weeks and 1 month is
often designated as extended medium range. Climate forecasts attempt to
predict the response of the earth climate system to long-lasting environ-
mental changes such as global increases in greenhouse gas concentration in
the atmosphere and the depletion of the tropical rain forest. They look at
time horizons from one to several decades. Although these forecasts are
becoming increasingly relevant for long-term decisions in the energy sector
(see e.g. EP2, 2008), climate prediction will not be considered in this
chapter.

In order to correctly interpret and use the information provided by long-
range forecasts, users of these products should be well aware of what makes
them inherently different from the more common short- and medium-range
forecasts. These differences are highlighted in Table 1.

The reader should always keep in mind that the purpose of long-range
forecasts is definitely not to predict the weather that will be observed at
some distant time in future (e.g. on some day next month) in future. Its goal is
rather to enlighten the user on a range of plausible weather scenarios which
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Figure 1. Skill scores of a set of eight competing forecasts of the daily average temperature
at London Heathrow. Positive (negative) skill scores indicate that the forecasts are more
(less) accurate than long-term climatology. Accuracy was measured by calculating root mean
squared errors (RMSE).

are consistent with observed or projected patterns of temperature anomalies
above the earth surface. In order to better appreciate the limitations of long-
range forecasts, is also important to have a smattering of how such forecasts
can be produced. The main techniques used in long-range weather prediction
are discussed and exemplified in Section 2. Issues with long-range forecast
communication and skill will be examined in Section 3 and Section 4 is
devoted to conclusions and recommendations.

2. Qutline of Methods for Long-Range Weather Prediction

There is no space in this chapter to discuss the many methods available in
detail, but these can be classified in three basic categories: the method of
analogues, statistical models and dynamical models.

2.1. THE METHOD OF ANALOGUES

2.1.1. Method

This method is the cheapest and quickest to realise, which explains why it is
also the most popular approach to produce a view on the weather in the
long-range. Basically, it consists of selecting past situations that were
similar initially to what is currently observed and see what sort of scenarios
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unfolded in the weeks/months that followed. It can be seen as a ‘naive’
form of ensemble forecasting using past observed scenarios as members.
The method of analogues can somehow be paralleled with an experienced
forecaster making inferences on future weather based solely on cases from
the past and not on dynamical or physical thinking. Mechanisms like ocean-
atmosphere interactions are not described statistically or explicitly by means
of a model, but are believed to be included implicitly in the past scenarios
themselves. This method is therefore essentially empirical. Of course, statis-
tical techniques may be used to detect/enhance any interesting pattern(s)
and/or summarise the results, e.g. cluster analysis (i.e. group scenarios into
possible families) or extract mean, percentiles or anomalies from the dis-
tribution of scenarios.

TABLE 1. Comparison of short- and medium-range forecasts vs. long-range forecasts.

Short and medium range Long range
Transient weather systems (e.g. storms, Transient weather systems are no longer
fronts, anticyclones) have some predictable
predictability
Forecasts are able to pick up the day- Forecasts predict overall/average conditions or
to-day variability of weather variables a range of possible outcomes over an extended
(temperature, pressure, wind speed and period of time (month, season)

direction, precipitation, etc.)

Deterministic (one single scenario only) Should be probabilistic

and probabilistic (distribution of possible

scenarios, confidence intervals for

predicted values of weather variables)

The surface of the ocean is important, but ~ The state of the ocean changes and must be

its state evolves very slowly and does not  predicted over a significant depth. In order to
change significantly over the forecast achieve this, coupled ocean-atmosphere models
period (only the atmosphere does) are used instead of purely atmospheric models
Intensive quality control is made possible  Quality assessment is more problematic due to
by the availability of frequent forecasts reduced forecast/observation frequency and less
and observations, and by the existence of  suitable verification methods

many established verification methods

‘Mature’ operational models “Young’ models with limited track record, often
experimental

The main criticism that can be made against the method of analogues is
that usually it does not contain a scientific understanding on the mech-
anisms involved in the forecast. This absence of model constitutes a severe
limitation to forecast improvement. Another weakness of the method is that
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it is heavily dependent on what is meant by ‘similar’. Furthermore, when
selecting analogues, some balance must be found between two antagonistic
constraints: the sample of analogues must be sufficiently large and at the
same time the analogues must be close enough. The criteria used to choose
the analogues as well as the sample size should always be mentioned when
communicating the forecast.

2.1.2. Example

An example of forecast obtained through the method of analogues and its
verification are presented in Figure 2. The divisional temperature dataset
from the US National Climatic Data Centre (NCDC, 1994) was used in this
case. The map on the left shows the distribution of mean surface tempe-
rature anomalies (in °F) predicted over the United States for the winter of
2008-2009 (from December to February, or DJF). This forecast was made
at the end of August 2008 using 11 past cases with similar neutral to weak
El Nifio conditions between 1950 and 2007. The plotted mean anomalies
suggest that, on average, such conditions are consistent with a cooler regime
across the north and eastern half of the United States and possibly a warmer
regime over central areas.

The map on the right shows the mean surface temperature anomalies
that were actually observed during the winter of 2008-2009.
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Dec to Feb 2004-05, 200304, 1992-93, 1990-91, 1981-82, 1980-81, 1978-79, 1969-70
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Figure 2. Mean surface temperature anomalies over the continental United States as pre-
dicted by the method of analogues (/eff) and observed (right) for the winter of 2008/09.
Source: NOAA/ESRL Physical Sciences Division.

The sign of observed anomalies was predicted correctly over the north,
much of the northeast, and over some of the central and southern sections of
the US. However, the sign of the anomalies was not well predicted over the
south and much of the southeastern quadrant (expected negative, observed
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positive). Note that the predicted mean anomalies are often quite small
compared to the observed. This is mainly due to the averaging process over
all 11 cases, which smoothes out extremes. Users should be aware that
forecasts obtained through averaging a number of scenarios (e.g. ensemble
mean) typically underpredict significant anomalies. Because climate is not
stationary, it is also important to specify which reference climatology has
been used. In this case, the mean temperature anomalies were calculated
relative to 1971-2000 long-term averages.

As mentioned earlier, a significant drawback of the method of analogues
is that it is a kind of ‘black box’ that does not ‘explain’ the forecast. The
forecasting methods discussed below use models to overcome this problem.

2.2. STATISTICAL MODELS

2.2.1. Method

Variations in average weather conditions can be forecasted quantitatively
using statistical relationships between one or a set of several chosen
explanatory variables (predictors) and a dependent variable to be predicted
(predictand), e.g.:

o Use sea-surface temperature (SST) anomalies in the North Atlantic
and/or the extent of the snow cover over the North-American and Eurasian
continents to predict the state of the North Atlantic Oscillation (NAO)
during the following winter (Rodwell and Folland, 2002; Saunders and
Qian, 2002; Saunders et al., 2003).

o Use the states of the Atlantic Multidecadal Oscillation (AMO), the
Quasi-biennial Oscillation (QBO) and El Nifio Southern Oscillation
(ENSO) to forecast the frequency and intensity of Atlantic hurricanes
(Klotzbach, 2007).

The main advantage of statistical models is that they can offer a
scientifically sound methodology to produce long-range forecasts that is still
relatively cheap to develop, maintain and run. Another significant advantage
is that many of these models are documented and discussed in the scientific
literature. Their focus is mainly regional (e.g. Western Europe, North America).

The significance and physical interpretation of statistical relationships
must be treated with particular care. For example, measures of association
like correlation do not necessarily imply causality. A good statistical model
should contain statistical relationships that reflect connections or links
believed to take place between key physical processes.
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A point worth noting about the statistical modelling approach is that it is
essentially based on linear thinking whereas weather and climate processes
are subject to non-linear interactions. Dynamical models, which are more
suitable to deal with non-linearity, will be dealt with in the next subsection.

2.2.2. Example

Winter climate over the North Atlantic and European sector is modulated by
a phenomenon known as the North Atlantic Oscillation (the NAO, see
http://www.ldeo.columbia.edu/NAO/, for more details). In the United
Kingdom, the Met Office has used a statistical model that uses the SST
anomaly pattern over the North Atlantic in May to predict the average state
of the NAO for the next DJF winter (Rodwell et al., 1999; Rodwell and
Folland, 2002). In November 2005, the onset of a cold spell in Europe
triggered a considerable rise in UK wholesale gas prices. The main factor
which had made energy markets particularly sensitive was the expectation
by the Met Office that a negative phase of the North Atlantic Oscillation
(NAO) would favour colder-than-usual conditions in northwest Europe over
the winter. The Met Office had stated that their system was able to correctly
predict the sign of the NAO two times out of three, which is a slight advan-
tage over random guesses. For instance, one might reasonably expect that a
prediction based on tossing a coin will be correct roughly 50% of the time.
The dashed line in Figure 3 shows all Met Office (UKMO) hindcasts/
forecasts of the winter NAO index from 1948/49 until 2008/09 (61 con-
secutive DJF winters). The solid line shows the observed indices. It can be
seen that the sign of the NAO index was correctly predicted for the winter
of 2005/06 (larger circles), though the expected amplitude (—0.86) was
twice as large as the observed (—0.42). Despite this apparent success, there are
also some winters where the UKMO forecast fails badly. The predictions
appear to follow the same trends (low-frequency signal) as the observations,
but there is no convincing evidence that they manage to capture the year-
to-year variability (high-frequency signal) of the observed indices. Therefore,
the claim that the Met Office statistical model provides a useful forecasting
advantage is questionable.

Alternative forecasts of the winter NAO index are shown in Figure 4.
These forecasts were not produced using a statistical model, but much more
simply by predicting the moving average of the observed NAO indices of
the two most recent winters (MA-2). Mathematically, MA-2 is good for
picking up the trends in observed NAO indices while being unable to
realistically reproduce their variation from 1 year to the next. For the winter
of 2005/06, the negative sign of the NAO index is also predicted correctly
by MA-2, but more accurately (—=0.24) than by UKMO.
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The statistics presented in Table 2 compare the performances of the two
forecasting systems over the period 1950/51-2008/09. The reader is referred
to Jolliffe and Stephenson (2003) for an exhaustive discussion of the
verification metrics used. The results suggest that the Met Office statistical
model does not really provide a clear advantage because the forecasts it
produces do not perform better than those obtained through a simple moving
average.

‘ ----UKMO —e— Observed ‘

Figure 3. Time series of observed (solid line with black circles) and UK Met Office pre-
dicted (dashed line with white circles) winter NAO indices from 1948/49 (first on the leff)
until 2008/09 (last on the right). The larger circles to the right highlight the winter of 2005/06.
Source: UK Met Office.

—o—- MA-2 —e— Observed

Figure 4. Time series of observed (solid line with black circles) and MA-2 predicted (dashed
line with white circles) winter NAO indices from 1950/51 (first on the left) until 2008/09
(last on the right). The larger circles to the right highlight the winter of 2005/06.
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TABLE 2. Performance statistics of the winter NAO index forecasts produced by the Met
Office statistical model (UKMO) and by moving averages over two winters (MA-2). The
scores that perfect forecasts should achieve are also indicated (Perfect) to facilitate
interpretation.

Predicted attribute  Verification metric Perfect UKMO MA-2
Sign Proportion of correct forecasts 100% 68% 69%
Sign Odds ratio skill score 1.00 0.63 0.68
Sign and amplitude Mean squared error 0.00 1.07 0.89

2.3. DYNAMICAL MODELS

2.3.1. Method

This ‘number-crunching’ approach, which has been made possible thanks to
the availability of ever more powerful supercomputers, consists of running
numerical simulations of global coupled ocean-atmosphere models. These
very complex models attempt to mimic the behaviour of the atmosphere-
ocean system in a way that is consistent with the laws of physics. Because
of all the technology and research efforts involved, this method is by far the
most expensive. However, it also offers the greatest scope for improve-
ments as models get more sophisticated. Much work has been done recently
to obtain better simulations of key patterns such as El Nifio and the Madden-
Julian Oscillation. Long-range forecast models are mainly developed, run
and maintained by national or international weather agencies in collaboration
with academic institutions.

Given the considerable levels of forecast uncertainty present in the long
range, producing one single forecast from one model does not make much
sense. Instead, ensembles of forecasts are run, each individual member
starting from slightly different initial conditions (different dates). Ensembles
run from different models (a.k.a. multi-model ensembles or super-ensembles)
like EUROSIP attempt to gauge the additional uncertainty due to model
imperfection. The resulting forecast distribution provides quantitative infor-
mation on forecast uncertainty that can be translated e.g. in probabilities or
confidence intervals. The horizontal resolution of long-range forecast models
is coarser (>100 km) than that of short- and medium-range forecast models
(<100 km), so downscaling techniques are required for regional applications
and extremes (e.g. weather generators).

Dynamical models and associated methods are extensively documented
in the peer-reviewed scientific literature.
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2.3.2. Example

Tercile probabilities are commonly used to summarise the forecast distribution
in a way that is relevant to users in the energy sector. Each temperature
forecast falls in one of three climatologically equiprobable categories labelled
as ‘below normal’ (the lowest third of the climate distribution), ‘above
normal’ (the upper third of the climate distribution), and ‘normal’ in-between.
Probabilities of terciles can then be estimated from the proportion of fore-
casts counted in each of these categories. The seasonal forecasting system
of the European Centre for Medium-range Weather Forecasts (ECMWF)
routinely produces probabilistic forecasts of terciles for the monthly mean
temperature out to a horizon of 7 months. The performance of these fore-
casts over Southern England has been gauged for all three terciles from a set
of 252 hindcasts. The statistic used in this case is the ROC skill score
(ROCSS). This metric measures the overall ability of the forecasts to dis-
criminate between event and non-event (maximise the hit rate and minimise
the false alarm rate). The score is 1 for perfect forecasts (hit rate of 100%
and false alarm rate of 0%), and O for forecasts that are not more informative
than climatology (i.e. always forecasting a probability of 33% for each
tercile). Once again, the reader is referred to Jolliffe and Stephenson (2003)
for more details on the ROCSS. The results shown in Figure 5 indicate
some modest skill in the first month, which dwindles rapidly at longer lead
times.

3. Current Issues with Long-Range Weather Forecasts

The examples given in Section 2 prompt to some issues with the com-
munication of long-range weather forecasts as well as in the interpretation
of their skill.

3.1. COMMUNICATION OF FORECASTS

Weather forecasts should always be presented to users in formats that are fit
for purpose. Long-range forecasts are inherently uncertain and so the level
of confidence that can be placed in them constitutes crucial information to
the decision maker. Forecast uncertainty can be conveyed to users by means
of confidence indices, confidence intervals and probabilities. The forecast
and its uncertainty must preferably be quantified so that the user can assess
their quality in an objective manner. In spite of this, a large number of long-
range forecast products available on the markets are based on a single
consensus scenario (e.g. the case presented in Section 2.1) with no or
little verifiable information on uncertainty or on alternative scenarios. Users
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Figure 5. ROC skill scores of a set of 252 ECMWF probabilistic seasonal hindcasts of
terciles for the monthly mean temperature over Southern England out to 7 months.

should also keep in mind that consensus scenarios are typically obtained
through averaging, so they tend to under-forecast or even remove signifi-
cant events that can be detected in the scenarios that have been averaged to
produce the consensus.

In a risk management perspective, probabilistic products offer more
value because they allow users to treat forecast uncertainty as information
that allows economically optimal decisions (Jolliffe and Stephenson, 2003,
Chapter 8). Nonetheless, many users may still be deterred by the difficulty
to understand and process probabilistic information, by the negative con-
notation of probability implying ignorance, and by some reluctance to
transfer the ‘Yes/No’ decision stage from the weather forecaster to the user
(Mailier et al., 2008).

3.2. SKILL OF LONG-RANGE FORECASTS

In 2006, the hedge fund Amaranth lost $6 billion and collapsed after
speculating wrongly that a very active hurricane season would disrupt the
US oil production in the Gulf of Mexico with soaring natural gas prices as
a result (Dealbreaker, 2006). Their bet was based on long-range forecasts
published in December 2005 and April 2006 by Klotzbach and Gray (2005,
2006). The high level of confidence placed in their predictions was due to
Dr Gray’s successful forecasts in 2002, 2003, 2004 and 2005. This story along
with the case discussed in Section 2.2 illustrates how forecast performance
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results can be misinterpreted. The example of Subsection 2.2 also recalls
that a forecasting system deemed skilful by meteorologists may turn out to
be less attractive for practical applications. This aspect is too often neglected
in the weather forecasting industry. For instance, predictions based solely on
ensemble means are popular as they tend to score best in terms of accuracy
because they minimise forecast errors. However, they smooth out potentially
crucial features like extreme events.

Finally, the example of Subsection 2.3 demonstrates that the typical skill
of long-range weather forecasts is not particularly high. All the methods
tend to perform best in situations with strong persistence in sea-surface
temperature anomalies (e.g. El Nifio/La Nifa), which is not always the case.

4. Conclusion

Because of the chaotic nature of the atmosphere, long-range weather fore-
casts will never achieve the same level of detail and confidence as short-
and medium-range forecasts. Users in the energy sector must take this fact
into account so that they can adjust their trust and base their strategies on
realistic expectations. Long-range forecast products based on obscure
(unpublished or undisclosed) methods should always be treated with
suspicion.

Any claim of skill should not be taken at face value. The meaning of
“skill” is strongly user-dependent and metrics used to assess skill should be
chosen carefully so that they are appropriate for the user application. Even
when the methods of forecasting appear to be scientifically sound, useful
skill is often modest in the mid-latitudes, particularly so in Europe. How-
ever, the limited reliability of long-range forecasts should not discourage
their users in the energy sector. Indeed, careful usage of these forecasts can
still make them a valuable tool for managing weather risk, and meteoro-
logists need feedback from energy users in order to make these forecasts
more useful for industrial applications.
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